If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5c^2-10c-1=0
a = 5; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·5·(-1)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{30}}{2*5}=\frac{10-2\sqrt{30}}{10} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{30}}{2*5}=\frac{10+2\sqrt{30}}{10} $
| 12x+18=15x | | 2/9x+12=4/9x-8 | | 0=4x(2x-10) | | -19-v=-22 | | c÷11=2 | | 6.4x-1.3=24.3 | | 3=2/e | | x-(-9)=28 | | 169+Y2+-26y=0 | | 2+2(x-8)=3-3(x-9) | | 5t=6=21 | | 6z+4=9z-5 | | r+19/5=6 | | (3x+10)=30 | | -4x(x-6)=2(7+3x) | | 3(d-4)-5=4 | | -42=w-5w-2 | | 2(2x-2)-2(3-5x)=6 | | 4x(x-6)=2(7+3x) | | -22=-7b+3b+6 | | 2y-1/2=3/2 | | 2(6x+1)-7=10x+5 | | 4.5(x)=13.5 | | 6+-4k=18 | | 2x-3=3(x+6) | | 6+4(x-5)=6-5(x-4) | | (2x-10)=(3x-15) | | 1.06(2.22)(9-x)=10 | | 2g+2+5g=65 | | 0.5h=12.5 | | 16.50h=49.50 | | 300=12(x+2) |